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Abstract
The labelling of states of irreducible representations of GL(3) in an O(3)

basis is well known to require the addition of a single O(3)-invariant operator,
to the standard diagonalizable set of Casimir operators in the subgroup chain
GL(3) ⊃ O(3) ⊃ O(2). Moreover, this ‘missing label’ operator must be
a function of the two independent cubic and quartic invariants which can be
constructed in terms of the angular momentum vector and the quadrupole tensor.
It is pointed out that there is a unique (in a well-defined sense) combination
of these which belongs to the O(3)-invariant Bethe subalgebra of the twisted
Yangian Y (GL(3);O(3)) in the enveloping algebra of GL(3).

PACS numbers: 02.20.Uw, 02.20.Sv
Mathematics Subject Classification: 17B10, 17B35, 22E47

The necessity for using adapted bases compatible with kinematical or dynamical symmetries
of a quantum system has long been recognized as an essential tool for dealing with the
implications of the symmetries in terms of constraints on physical quantities, and for reducing
the number of computations. Unfortunately, the symmetries of interest in physics are not
always those which admit ‘canonical’ bases, possessing complete sets of orthonormal basis
functions which are common eigenfunctions of a maximal set of commuting Casimir operators,
in a chain of subgroups extending from the group of interest up to the maximal (unitary)
group of transformations on the space in question. A case of a serendipitous group labelling
occurred in Racah’s early work on equivalent f electrons for rare earth spectra [12] where
the exceptional group G2 was found to extend the symmetry adapted group–subgroup chain
from U(7) ⊃ O(7) ⊃ O(3) to U(7) ⊃ O(7) ⊃ G2 ⊃ O(3), in a way which made the
specifications of the electronic wavefunctions complete for the cases studied. In fact all
steps in this chain, and generically U(N) ⊃ O(N), are of the type where there are one
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or more ‘missing labels’—in order to resolve multiplicities in the restriction of irreducible
representations of the larger group to the subgroup, the degeneracies should be removed with
the help of additional subgroup invariant operators which cannot be Casimir operators of the
group or the subgroup, but must be invariant operators taken in the enveloping algebra of
the group that commute with each other. It follows from general arguments based on the
double commutant theorem that there always exist enough such invariant operators to provide
the missing labels for resolving multiplicities.

In this note we study the case of N = 3, namely the classic ‘U(3) ⊃ O(3) state labelling
problem’, which is ubiquitous in atomic, nuclear and many-body physics. Below, we give a
brief introduction to the notation necessary to define the problem, and we review the known
result that there are two admissible additional O(3) invariant operators in the enveloping
algebra of U(3) which are candidates for the single ‘missing label’ needed in this case. We
then turn to the formalism of Yangian algebras, which provide a powerful way of handling
the (infinite dimensional) enveloping algebras of the classical Lie algebras. Specifically, we
consider the so-called Bethe subalgebras [9, 10], which are maximal commutative subalgebras.
For the N = 3 case, we show explicitly that there is a unique (in a well-defined sense)
combination of the candidate O(3) non-subgroup invariants, which belongs to the O(3)-
invariant Bethe subalgebra of the twisted Yangian Y (GL(3);O(3)).

The SU(3) ⊃ O(3) state labelling problem is comprehensively examined in [11], which
also includes extensive numerical evaluations for low-dimensional representations. In the
following we work with the complex algebras, and so refer to GL(3),O(3) and so on (as
well as following the physics convention of not distinguishing notationally between group and
algebra).

Consider the standard generators Eij , i, j = 1, 2, 3 of GL(3), with commutation relations
modelled on those of the defining 3 × 3 matrix units eij , acting on three basis vectors ei in the
usual way:

[Eij , Ekl] = δjkEil − δilEkj . (1)

For applications in many-body physics the orbital angular momentum generators are given by

Lij = Eij − Eji (2)

from which the usual vector angular momentum generators follow as L1 = L23, L2 =
L31, L3 = L12. For labelling states in irreducible representations of GL(3) one requires
a maximal set of commuting operators. Those in the group–subgroup chain GL(3) ⊃ O(3) ⊃
O(2) are the associated Casimir operators. Taking them to be the standard Gel’fand invariants
gives for GL(3), at increasing degree,

C(1) =
3∑

i=1

Eii, C(2) =
3∑

i,j=1

EijEji,

and

C(3) =
3∑

i,j,k=1

EijEjkEki, (3)

the linear Casimir being of course the number operator N ≡ E11 +E22 +E33 (which determines
the energy

(
N + 3

2

)
h̄ω if the system is a three-dimensional isotropic oscillator). For ease of

writing, we adopt the notation 〈E〉, 〈E2〉 and 〈E3〉 for these Casimir operators. Further
invariants are the quadratic Casimir for O(3),

C[2] =
3∑

i,j=1

LijLji, (4)



Letter to the Editor L221

which we denote by 〈L2〉, and the O(2) angular momentum component L12 (the Casimir
operator being |L12|).

The remaining GL(3) generators are the quadrupole tensor

Qij = Eij + Eji, or Q′
ij = Eij + Eji − 2

3Nδij , (5)

where the traceless form Q′ ∈ SL(3) separates the number operator N. It is proven in [11] using
methods of invariant theory (or so-called ‘integrity bases’) that the algebraically independent
O(3) invariants in the GL(3) enveloping algebra are at degrees 3, 4 and 6 and can be taken
to be

X(3) = 〈LQ′L〉 =
3∑

i,j,k=1

LijQ
′
jkLki, X(4) = 〈LQ′2L〉 =

3∑
i,j,k,l=1

LijQ
′
jkQ

′
klLli ,

and

X(6) =
3∑

i,j,k,l,m,n=1

LijLklLmnQ
′
ikQ

′
lmQ′

jn. (6)

The operators X(3) and X(4) also appeared in works of Bargmann and Moshinsky [1, 2] on
N particle systems (in the case N = 3) which were O(3) invariant and with an additional
U(N) symmetry. Eigenvalues and other properties of the operators were investigated very
extensively by these authors. We were also informed by an anonymous referee that the cubic
operator played an important role in the computation of Clebsch–Gordan coefficients in the
reduction GL(3) ⊃ O(3) in an unpublished paper by Tolstoy (1985).

Observe the fact that X(3) and X(4) are primary invariants, while X(6) is secondary
in that (X(6))2 is a polynomial in X(3), X(4) and terms of lower degree (the commutator
[X(3), X(4)] gives essentially X(6) up to invariants of lower degree). Let Z(GL(3);O(3))

be the commutative subalgebra of U(GL(3)) generated by the Casimir operators of GL(3)

and O(3), namely, the operators 〈E〉, 〈E2〉, 〈E3〉 and 〈L2〉. Then any O(3)-invariant operator
that can be used for state labelling must be of the form f (X(3), X(4)) + X(6)g(X(3), X(4))

for some polynomials f, g with coefficients in Z(GL(3);O(3)). As the object of interest is
the restriction of an irreducible GL(3) representation to O(3), the GL(3) Casimir operators,
all being scalar multiples of the identity, lend no help for resolving multiplicities of O(3)

irreducible representations. It is the O(3) Casimir and invariant operators such as X(3) and
X(4) that provide the desired information for state labelling. In [11], explicit numerical
evaluations of X(3) and X(4) are tabulated for irreducible representations of SU(3) of high
enough dimensions that multiplicities up to 3 occur in the restriction to SO(3).

The infinite-dimensional Yangian algebras have been intensively studied in relation with
applications to integrable systems and the inverse scattering method. They have a very
remarkable formulation as noncommutative matrices over the ring of formal Laurent series,
enabling the combinatorics of the coefficients involved in commutation relations and other
constructs such as invariants and coproducts, to be handled by appropriate shifts of the formal
variable u. A significant identification is that of the generators of the Yangian Y (GL(N))

with elements of the enveloping algebra of GL(N). Denoting the generators of the Yangian
by t (m)

ij , m = 0, 1, 2, . . . , this entails

Tij (u) =
∞∑

m=0

(−1)m
t(m)

ij

um
, t(m)

ij = (Em)ij , where

(E0)ij = δij , and (Em)ij =
N∑

k=1

Eik(E
m−1)kj for m > 0.

(7)
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More simply, the inverse of this series provides the evaluation homomorphism

Tij (u) → δij +
Eij

u
. (8)

from Y (GL(N)) to the universal enveloping algebra U(GL(N)). The generators are succinctly
written with the Laurent series in matrix form

T (u) =
N∑

i,j=1

eij ⊗ Tij (u) (9)

regarded as an N × N matrix with entries in the Yangian, or an element of End(CN) ⊗
Y (GL(N))[[u]]. Central to such manipulations is the R-matrix (an operator on CN ⊗ CN ),

R(u) = u · 1 + P, (10)

where P is the permutation operator defined by Pei ⊗ ej = ej ⊗ ei . In terms of elementary
matrices

P =
N∑

i,j=1

eij ⊗ eji . (11)

The O(N) twisted Yangian which we denote by Y (GL(N);O(N)) with generators
S(u)ij ∈ Y (GL(N))[[u]] associated with the above embedding (2) of O(N) in GL(N) is
introduced as

Sij (u) =
∞∑

m=0

s(m)
ij

um
, S(u) =

N∑
i,j=1

eij ⊗ Sij (u),

(12)

S(u) = T (u)T̃ (−u) = 1 +
E − Ẽ

u
− EẼ

u2
,

using definition (9) above for T (u) and with T̃ ij (u) = Tji(u). Here, E = ∑
eij ⊗ Eij and

Ẽ = ∑
eij ⊗ Eji . The relevant R-matrix is now the partial transpose

R̃(u) = u · 1 + Q, (13)

where Q is the projection operator onto the one-dimensional O(N)-submodule C
∑

i ei ⊗ ei .

In terms of elementary matrices

Q =
N∑

i,j=1

eij ⊗ eij . (14)

As with the GL(N) Yangian, the commutation relations can be succinctly expressed using the
R̃-matrix, and many structural properties of the algebra established (see [9, 10]; for even N
the Sp(N) twisted Yangian Y (GL(N); Sp(N)) can similarly be introduced).

One of the most fundamental aspects of the Yangian is the fact that the trace tr[T (u)] of
the Laurent series over End(CN), namely,

tr[T (u)] =
N∑

i=1

Tii(u), (15)

commutes with tr[T (v)] for arbitrary u, v—that is, the coefficients provide an infinite set of
commuting operators. The diagonalizability of the transfer matrix is of course the underpinning
of many of the applications of Yangians and the Yang–Baxter equation to integrable systems.
The same property can also be proved for the trace of the twisted Yangian, tr[S(u)].
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The identification of Abelian subalgebras is not limited solely to the trace of the Yangian
however. The so-called ‘quantum determinant’ is an object whose index structure is that of a
determinant (of the Yangian matrix), but whose terms involve systematic shifts in the formal
variable in order to compensate for the non-commutativity. The quantum determinant is thus
a Laurent series in principle encoding an infinite number of coefficients, which this time
belong to the centre of the algebra. Beyond the trace and the quantum determinant there is a
remarkable set of infinite-dimensional Abelian subalgebras indexed by a fixed N × N matrix
Z = ∑

i,j eij zij , the so-called Bethe subalgebras [9, 10] B(GL(N);Z) and B(O(N);Z). If
Z is generic, in that it has a simple spectrum, these subalgebras are maximal, and generate
the equivalent for the Yangians, of a complete set of commuting labelling operators for
representations of finite-dimensional simple Lie algebras.

Henceforth, we specialize to the GL(3) ⊃ O(3) case, and give the concrete constructions
for the twisted Yangian Y (GL(3);O(3)). Because we are interested only in O(3) invariants,
we consider Z = 13×3 and the Bethe subalgebra B(O(3); 13×3). This choice of Z simplifies
the general definitions, and the generators of the corresponding Bethe subalgebra are the
coefficients in u−1, u−2, . . . , of the following three elements A1(u), A2(u), A3(u):

A1(u) = tr1[S1(u − 1)],

A2(u) = tr12[A12 ⊗ 1 · S1(u − 1)R̃12(−2u + 3)S2(u − 2)],

A3(u) = tr123[A123 ⊗ 1 · S1(u − 1)R̃12(−2u + 3)R̃13(−2u + 4)

× S2(u − 2)R̃23(−2u + 5)S3(u − 3)]. (16)

The subscript notation indicates to which of the subspaces various objects belong. For example
in A2, S2(u) = ∑

i,j 1 ⊗ eij ⊗ Sij (u), whereas in A3, S2(u) = ∑
i,j 1 ⊗ eij ⊗ 1 ⊗ Sij (u). The

A are antisymmetrization operators acting on the appropriate spaces with

A12 = 1 − P12,

A123 = 1 − P12 − P13 − P23 + P12P23 + P13P23.
(17)

Finally, the matrix objects are subjected to a total trace.
In A1(u) we recognize the basic transfer matrix trace discussed already, merely rewritten to

emphasize its relationship to its partners in the Bethe subalgebra. Also, the top member A3(u)

is the quantum determinant itself (always present, and independent of the matrix Z, because
it is associated with the centre). In fact for the twisted Yangian, the quantum determinant
is essentially the square of the quantum determinant for the Yangian itself. For the present
N = 3 case, we can thus compute A3(u) via

A3(u) = B3(u)B3(4 − u), where

B3(u) = tr123[A123 ⊗ 1 · T1(u − 1)T2(u − 2)T3(u − 3)].
(18)

From (17), (18) and the previous definitions it is straightforward to compute these Bethe
subalgebra generators in terms of traces of polynomials in the GL(3) and O(3) generators as
in (3) above. We find explicitly

A1(u) = 3 − 〈EẼ〉
(u − 1)2

,

A′
2(u) = 〈L2〉 +

〈EẼEẼ〉 − 〈L2〉
(u − 1)(u − 2)

,

B3(u) = 6 − 2〈E〉
(

1

(u − 1)
+

1

(u − 2)
+

1

(u − 3)

)
− 3

〈E2〉 − 〈E〉2

(u − 1)(u − 3)

− 2〈E3〉 + (〈E〉 + 1)(〈E〉2 − 3〈E2〉)
(u − 1)(u − 2)(u − 3)

. (19)
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where we have defined the essential part of A2(u) after making combinations with A1(u) by

A′
2(u) = (u − 1)(u − 2)

(
A2(u)

2u − 3
+ A1(u)A1(u − 1) − A1(u) − A1(u − 1) + 3

)
. (20)

In simplifying the expressions basic symmetry properties have been used, for example
Lij = −Lji giving 〈L〉 = 0, and from the definition of the angular momentum operators
〈L2〉 = 2〈E2〉 − 2〈EẼ〉. Similarly,

(EẼ)ij − (EẼ)ji = Lij (21)

upon using the commutation relations (1), so that

〈EẼL〉 = 〈LEẼ〉 = 1
2 〈L2〉. (22)

By taking appropriate linear combinations, the independent generators of B(O(3); 13×3) can
be taken to be the set

〈E〉2, 〈E2〉, 〈E〉〈E3〉, 〈L2〉, and 〈EẼEẼ〉. (23)

A useful way to look at the Bethe subalgebra B(O(3); 13×3) is to consider it as an associative
algebra over B(O(3); 13×3) ∩ Z(GL(3);O(3)) generated by the operator 〈EẼEẼ〉.

To complete the identification with labelling operators for GL(3) ⊃ O(3), it is necessary
to rewrite the operators (6) in the trace notation as above. In such expressions, use must again be
made of the commutation relations in order to group similar terms. Within strings of the form
〈X〉 = 〈EmẼn · · ·〉, for example, simplifications that can be made are that the trace is cyclic in
nature, and also that the transpose X̃ behaves (anti)-involutively (of course, 〈X̃〉 = 〈X〉)—in
both cases up to rearrangements in the order of terms, which produce invariants of lower degree
after applying the commutation relations. It should also be noted that for O(3), 〈L3〉 = 1

2 〈L2〉
and 〈L4〉 = 1

2 〈L2〉(〈L2〉 + 2). Similarly, in GL(3) the quartic Casimir 〈E4〉 = tr(E4) is not
algebraically independent, being of higher degree than the exponents for invariants of the
group, namely 1, 2 and 3 for GL(3). In this case by invoking the characteristic identity [7, 4]
for the matrix Eij (the analogue of the matrix Cayley–Hamilton identity, but with coefficients
in the centre of the enveloping algebra), one can show that 〈E4〉 is a linear combination of
〈E〉〈E3〉 and similar reducible terms of degree up to 4, consisting of products of traces with
lower degree.

Because of the discussion following equation (6), we may consider, instead of X(3) and
X(4) themselves, their combinations over Z(GL(3);O(3)) defined by

Y (3) = X(3) + 2
3C(1)C[2],

Y (4) = X(4) + 4
3C(1)X(3) + 4

9 (C(1))2C[2].

Some very lengthy calculations yield

Y (3) = −(〈EẼ2〉 + 〈ẼE2〉) + 2〈E3〉 − 3〈E2〉 + 〈E〉2,

Y (4) = −2〈EẼEẼ〉 + 2〈E4〉 − 6〈E3〉 + 2〈E〉〈E2〉 + 6〈L2〉.
Clearly, the two algebraically independent invariants equivalent to X(3) and X(4) in the
trace notation are 〈EẼ2〉 + 〈ẼE2〉 and 〈EẼEẼ〉. Moreover, the cubic invariant piece
〈EẼ2〉 + 〈ẼE2〉, which does not belong to B(O(3); 13×3), is completely eliminated from
Y (4). We further define

Y = X(4) + 4
3C(1)X(3) + 4

9 (C(1))2C[2] − (2〈E4〉 − 6〈E3〉 + 2〈E〉〈E2〉 + 6〈L2〉). (24)
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Then,

Y = −2〈EẼEẼ〉.
This preferred labelling operator is the unique (up to elements of B(O(3); 13×3) ∩
Z(GL(3);O(3)) and complex scalar multiples) linear combination over Z(GL(3);O(3))

of the invariants of [11] at order 4, which belongs to the O(3)-invariant Bethe subalgebra
B(O(3); 13×3).

In this letter, we have pointed out that the ‘missing label’ in the GL(3) ⊃ O(3)

group reduction can be identified with the appropriate generator of the O(3)-invariant Bethe
subalgebra of the twisted Yangian in the GL(3) enveloping algebra. This identification answers
the longstanding puzzle of the lack of any systematic way to resolve the labelling problem,
and casts light on known results, such as Racah’s proof ([12], cited in [11]) that there is no
choice of Hermitian labelling operator with a rational spectrum. In general terms, it provides
an interesting insight into conventional group representation theory, coming ultimately from
the study of integrable systems in physics (see [3]).

Our present result has potentially wide applicability. Clearly, labelling problems exist
whenever group theoretical considerations arise in the analysis of quantum systems, and
‘missing’ labels are the generic case. For concrete applications see the review [12] or for
example [5, 6] in the context of configuration mixing in the nuclear shell model. As to
generalizations, it is known, for example, that higher dimensional analogues of the N = 3
case have quadratically growing numbers of ‘missing labels’, for example two for GL(4) ⊃
O(4), four for GL(5) ⊃ O(5) and so on [8]. It is tempting to conjecture that also in these
cases, the invariant Bethe subalgebra of the twisted Yangian will provide a sufficient set of
commuting labelling operators. Along these lines one can further extend the analysis to other
labelling problems, for example Sp(4) ⊃ Sp(2), or even to exceptional embeddings such as
that of G2 ⊃ SO(3) mentioned in the introduction. For the U(3) ⊃ O(3) labelling problem
itself, there is of course the task of numerical evaluation and analysis of the spectrum of
preferred missing label (24) in the light of the present framework. Further work along these
lines is in progress.
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